QMMEOpen

Copyright (C) 2002 Rainer Queck

This program is free software; you can redistribute it and/or

modify it under the terms of the MPL MOZILLA PUBLIC LICENSE.
This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

MPL MOZILLA PUBLIC LICENSE for more details.

It started like I think most of the Modelmaker Experts started.

One day I realized, that I am doing the same work over and over again. So I decided to build me a little expert to save me from doing all this work.

The expert kept growing since then due to my laziness and the very valuable help of Gerrit and his effort of adding all those nice features to the Modelmaker API.

In the meanwhile I also received some encouraging comments on the usefulness of my expert and that is why I decided to publish it.

Please be aware, that this originally is a tool the was build to help me and therefore many lines of code are designed “quick and dirty”. Be assured that QMME still has a lot of bugs in it, so be careful on how you use it. If you have doubts, make a backup first before you use a new function.

Well, I don’t want to make my little expert worse than it really is. I am using it every day and it helps me to save a lot of time. Off course I know quite well on how to use it

(
This expert is using API elements of Modelmaker Version 6.25 build 1550 beta.

If you are using a earlier version one or the other function may not be working correctly due to this fact.

If you find bugs or have suggestions on this expert please put them to the Modelmaker news group. I will take care of it as soon as I find the time to do it.

Rainer Queck

Saturday 21st 2002

http://www.qutronic.de
e-mail: Rainer.Queck@Qutronic.de

What QMME can do for you:

1. Generate Unit header (alt + h)

2. Enclose a method in try / except (alt + e)

3. Lookup diagrams referencing current diagram (alt + d)

4. Lookup diagrams referencing current method (alt + r)

5. Find a certain class (alt + c)

6. Add default folders (alt + f)

7. Lookup methods referencing the current method (alt + y)

8. Standardize diagram names -> QMME Desktop -> Meunu -> Tasks

9. Find a string in the code model -> QMME Desktop -> Meunu -> Tasks

10. Group diagrams -> QMME Desktop -> Tabsheet DgGroups

11. Automatically generate a sequence diagram from delphi’s call stack

(QMME Desktop is brought up by (alt+q))

1. Generate Unit header (alt + h)

looks up a “header.txt” file and adds it’s contents to the top of a unit also adding two lines showing the date and time on when this was done and a macro that expands to date and time, every time the unit is generated.

Example:

//--

// This software was written by Qutronic E. Queck

// It may be use as it is. Don't complain any things it does or does not do

// to the autor.

// However sugestions are wellcome and might be considered on future Versions.

//

// Author : Rainer Queck

// Rainer.Queck@t-online.de

//

//--

// Unit Created at : Date: 16.02.02 Time :13:17:46

// Unit last modified : Date: <!Date!> Time :<!Time!>

//--

2. Enclose a method in try / except (alt + e)

Example :

//=== TRY

TRY

..............

<your code>

..............

//===

EXCEPT

 on E: Exception do

 begin

 FExMsg:='Exception in <!ClassName!>.<!MemberName!>:'+E.Message;

 if FDiagnose<>nil then

 FDiagnose.Report('E',FExMsg)

 else

 ShowMessage(FExMsg);

 end;

END;

The Class “ TDiagnose" will automatically be added to your model if not already present. Declaration of Fdiagnose, FexMsg is done automatically

8. Standardize diagram names -> QMME Desktop -> Meunu -> Tasks

IMHO it is much easier to find a diagram, if the diagram names follow some rules. That is why I defined the following rules:

Prefix:

cs = ClassDiagram

sq = SequencDiagram

cl = CollaborationDiagram

uc = UseCaseDiagram

rb = RobustnesDiagram

ac = ActivityDiagram

ud = UnitDependencyDiagram

im = ImplementationDiagram

mm = MindeMap

Spaces will be remove, and the next letter will be capitalized.

For example, if you have a class diagram with the following name:

“My very nice classes”

This function will convert the name to : “csMyVeryNiceClasses”

10 .Group diagrams -> QMME Desktop -> Tabsheet DgGroups

As a Project get bigger the number of diagrams increases and it gets harder and harder to locate certain diagrams.

The thought of this function is to hold groups of diagram, dealing with a certain subject of the project.

The “Grouping” information is stored in a file <ProjectName>.grp and there is a reason why I added the buttons “Load” and “Save” to the DgGroups Tabsheet.

It happens (and I haven’t had the time yet to investigate this problem) that this file gets corrupted or looses its contents. Not often, but it happens so make use of “Save”

When ever you modify your groups.

11. Automatically generate a sequence diagram from delphi’s call stack

To use this feature you need to install the Delphi – Modelmaker interface wizard “ QMMDE.bpl”. This will add a entry to Delphi’s help menu: “Call Stack -> Modelmaker”.

When you are debugging your project with delphi, and you stop at a breakpoint, you can automatically generate a sequence diagram out of your call stack and add it as “ sqDelphiCallStack” to your model.

